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1. Diffraction High Energy Particle Scattering

In high-egergy particle scattering, interactions are mediated by the ex-
change of particles between the scattering partners. Regge theory [1], and
in a wider sense Regge phenomenology [2], provides a framework for the
successful description of many peripheral high-energy hadronic reactions.
Conceptionally the most simple peripheral diffractive process is elastic scat-
tering. In Regge theory a new, hypothetical object, the pomeron(IP ) [3],
has been introduced as the exchanged object to describe elastic scattering,
in particular the rise of the cross section with center-of-mass-energy. The
pomeron carries the quantum numbers of the vacuum with the exception
of spin.. If the pomeron transfers enough energy one partner or both may
dissociate into a multi-particle state giving rise to ineleastic diffractive re-
actions. The possible reactions are visualised in Fig.1.

2. Kinematics of Deep Inelastic Scattering and

Diffractive Deep Inelastic Scattering

In deep-inelastic electron-proton scattering (DIS) at the HERA col-
lider [4], we are dealing with the process which is sketched in Fig.2. The
word electron is further used generically for electrons and positrons. The
incoming electron emits a virtual photon which interacts with one of the
quarks in the proton. The struck quark receives a transverse momentum
and separates from the remnant of the proton. A colour string stretches
between them. Finally, the colour string breaks up and the system of the
proton remnant, the struck quark, and the colour string fragments into
hadrons which fill the region between the initial proton direction and the
struck quark direction. The kinematics of inclusive DIS is described by the
following variables:

(1)
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s = (k+p)2 : center-of-mass-energy squared of the e-p system,

Q2 = −q2 = −(k−k′)2 : negative momentum transfer squared at the

electron vertex,

W2 = M2
h = (p+q)2 : cms energy of the virtual photon and the proton,

mass of the hadronic system in the final state,

x =
Q2

2p · q
: the fraction of the proton momentum carried

by the struck quark,

y =
p · q

p · k
: fraction of the electron momentum transferred to

the proton in its rest system.

These variables are not all independent. They are connected by the
relation Q2 = x · y · s.

In diffractive scattering, the virtual photon interacts with a pomeron, as
shown in Fig. 3. The proton remains intact or dissociates into a low-mass
hadronic system N. The virtual photon and the pomeron form a hadronic
system X. Because the systems X and p(N) are not connected by a coloured
string the hadronic system X is well separated from the proton. This leads
to a gap in (pseudo)rapidity, η = −ln tan(Θ/2), between the proton(N) and
the system X. Here Θ is the angle between the proton direction, called for-
ward, and the first detected particle from the system X. Additional variables
are needed to describe diffractive scattering:

MX : mass of the diffractively produced

hadronic system X,

t = (p − p′)2 : four momentum transfer squared at

the proton vertex,

xIP =
(p − p′) · q

p · q
=

M2
X + Q2

W 2 + Q2
: fraction of the proton momentum

carried by the exchanged pomeron,

β =
Q2

2(p − p′) · q
=

Q2

M2
X + Q2

=
x

xIP
: momentum fraction of the pomeron

that is involved in the hard scattering.
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3. Regge phenomenology versus perturbative QCD

Hadronic reactions in peripheral processes have been studied extensively
and can be described in the framework of Regge phenomenology. In Regge
theory, the exchanged object between the target proton and the incoming
projectile is a Regge trajectory, also called a reggeon. A Regge trajectory de-
scribes the exchange of a system of generalized particles with continuous spin
but otherwise the same quantum numbers. Trajectories are parametrised
to be linear

αIR(t) = αIR(0) + α′ · t .

All the trajectories, on which known particles lie, have an intercept
αIR(0) smaller than one. This has the consequence that their contribution
to the total cross-section falls with energy. It is an experimental fact that at
high energies the total hadronic cross-sections rise with energy because they
include the elastic process described by pomeron exchange. At high enough
energies, this pomeron contribution will dominate. Diffractive reactions are
mediated by the pomeron trajectory. Their cross sections are given by:

dσ

dt
∝ eb(W )·t

(

W

W0

)4(αIP (t)−1)

σtot ∝

(

W

W0

)2(αIP (0)−1)

with b(W ) = b0 + 4α′ · ln

(

W

W0

)

.

In DIS, W is the center-of-mass-energy of the virtual photon plus the pro-
ton. From the analyses of many peripheral hadronic processes the pomeron
trajectory was found to be [5]:

αIP (t) = 1.08 + 0.25 · t .

The predictions from Regge theory for soft diffractive processes are a
power-law behavior of the total diffractive γ∗-p cross-section as σ(W ) ∝ W δ

with and an exponential drop of the differential cross section as a function
of t, (note: t is negative), whith an increasing slope, b(W ), as W increases.
This last fact is called shrinkage.

Diffractive deep-inelastic scattering at high photon-virtualities, Q2, (hard
diffraction) is expected to be described by perturbative QCD because high
Q2 provides a hard scale. This can be conveniently formulated in terms of
the colour-dipole picture. The virtual photon splits into a quark-antiquark
pair at an early time before the interaction and the quark-antiquark pair
interacts with the proton as shown in Fig.4. In the simplest approach the
interaction takes place by the exchange of two gluons which form a colour
singlet. In the next order, the quark-antiquark pair radiates a gluon to
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which one of the exchanged gluons couples. This is sketched in Fig.5. In
higher orders of pQCD, the exchanged gluon system is commonly treated
as a BFKL-type ladder [6]. In the colour-dipole picture, the transverse sep-
aration of the q and the q̄, r, is given by the virtuality Q2, the quark mass
mq, and the momentum fractions z and (1− z) of the quark and antiquark,
respectively:

r ∝
1

z(1 − z)Q2 + m2
q

.

Various pQCD inspired models exist for the hard diffractive-scattering. All
these models predict little or no shrinkage.

4. Exclusive vector-meson production

Exclusive vector-meson production is a diffractive process and has been
studied extensively. The vector-meson dominance model (VMD) [7] plus
Regge theory provide a framework in which exclusive vector-meson produc-
tion is understood as a quasi-elastic scattering where the incoming vector
meson is off mass shell. The situation is graphically shown in Fig.6. In
pQCQ, exclusive vector-meson production in the colour-dipole picture pro-
ceeds according to Fig.7. Perturbative QCD is expected to be applicable
when the transverse dimension, r, of the quark-antiquark sytem gets small.
This happens when either Q2 or mq get big. Perturbative QCD models pre-
dict a rise of the cross section like σ(W ) ∝ W δ with δ ≈ 0.8 which is faster
than expected from Regge theory. The slope of the t distribution is pre-
dicted to be b ≈ 4 GeVand α′ ≈ 0. This means no or little shrinkage. The
conditions under which exclusive vector-meson production is a hard diffrac-
tive process that can be described by pQCD models, will be investigated in
the rest of this section.

4.1. Can the vector-meson mass be a hard scale ?

Data from photoproduction at HERA permit to test the behaviour of
exclusive vector-meson production as a function of the meson mass because
Q2 = 0. Figure 8 shows the cross sections for photoproduction of ρ, ω,
φ, J/Ψ, Ψ(2S), and Υ as functions of W [8, 9, 10, 11, 12, 13]. The lines
through the data points are only to guide the eye and are not fit results.
The W -dependence of the light vector-mesons (ρ, ω, φ) can be described
by a slope δ ≈ 0.22 in agreement with Regge phenomenology. For higher
vector-meson masses, the rise with W gets steeper. This indicates the onset
of hard diffraction. Therefore exclusive production of J/Ψ mesons should
be described by pQCD model calculations already from Q2 = 0 on. In Fig.9
the photoproduction cross-section for J/Ψ mesons as a function of W is
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compared to pQCD model calculations [14]. These calculations are able to
describe the data qualitatively. PQCD models predict little or no shrinkage.
Figure 10 shows measurements of slope parameters, b, for photoproduction
of ρ mesons at different W values. From these measurements one extracts
α′ = 0.3± 0.4GeV−2 . Within the large uncertainty this is compatible with
the value of 0.25 expected for soft processes. For the photoproduction of
J/Ψ-mesons the same is shown in Fig.11. Here one finds α′ = (0.164 ±
0.028 ± 0.030)GeV−2 which is smaller than 0.25. This again indicates that
photoproduction of J/Ψ mesons is not a soft process and the vector-meson
mass can provide a hard scale which makes pQCD applicable.

4.2. Can Q2 provide a hard scale ?

The cross section for exclusive production of ρ mesons at Q2 = 0 be-
haves like σ(W ) ∝ (W/W0)

δ with δ = 0.22 as shown in section 5.1. Figure
12 shows this cross section as a function of W for higher values of Q2 [15].
The exponent δ increases with Q2 as shown in Fig.13. This indicates the
transition from a soft process to hard one. In Fig.14, the cross section for
J/Ψ productions is shown as a function of W for different Q2 [16]. The
dependence on W hardly changes with Q2 and already at Q2 = 0 the expo-
nent δ is bigger than 0.22. The δ value for J/Ψ production is approximately
equal to the value for ρ production at high Q2. Figure 15 shows the cross
section for J/Ψ production as a function of Q2. The data are well described
by pQCD models [17] [18] even from Q2 = 0 on. These models use par-
ton distributions derived from inclusive deep-inelastic scattering (see section
6.7). The slope b of the t distribution is supposed to change in a transition
from the Regge regime to pQCD. The Figs.16 and 17 show this slope as
a function of Q2 for ρ and J/Ψ production. For ρ production, the t slope
decreases with increasing Q2 to a value of about 4 as expected from pQCD
models. For J/Ψ production this slope is constant with Q2 at the level
of about 4 which reflects the fact that J/Ψ production is a hard process
from Q2 = 0 on. One concludes that the initially soft ρ-production becomes
a hard process with increasing Q2 whereas the J/Ψ production is a hard
process from Q2 = 0 on.

4.3. Can t provide a hard scale ?

In a similar way as the square of the momentum transfer from the elec-
tron to the vector-meson, Q2, leads eventually to a hard scale which justifies
the application of pQCD one would expect that also the square of the mo-
mentum transfer from the proton to the vector-meson, t, can serve as a
hard scale. To study this, photoproduction of vector-mesons at high | t |
has been investigated. Experimentally, this leads to a small complication.
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All studies presented so far have been performed with data integrated over
t. Since the differential cross-section is exponentially falling with increasing
| t |, mainly very small | t | values dominate these data. At higher | t |
values, it becomes more and more likely that the proton will dissociate into
a hadronic system. At a low mass of the hadronic system N, e.g. N being a
nuclear resonance, the particles emerging from this sytem leave the detec-
tor under very small angles through the beam pipe without being detected.
These events cannot be distinguished experimentally from events in which
the proton stays intact. At higher masses of N, some of the particles of the
system N emerge with high enough transverse momenta to be seen in the
detector. These events can be recognized and excluded from the dataset.
Thus at higher | t | values, one deals with a mixture of proton dissociatives
and non-dissociative events. At very high | t | values, the proton-dissociative
events finally dominate. In order to draw conclusions from such event sam-
ples for the process of diffraction one has to assume vertex factorisation,
i.e. that the ratio σγp→ρN/σγp→ρp depends only on MN , W , and t and not
on Q2. Data on this ratio are shown in Fig.18. Within the experimnetal
uncertainties, vertex factorisation holds.

In Fig.19, | t | distributions are shown for proton-dissociative photo-
production of ρ, φ, and J/Ψ mesons from ZEUS [19]. The data are well
described by fits of the form :

dσγp→V N

dt
∝| t |−n .

The data are fitted to the form dσ/d | t | ∝ (−t)−n. The fit results for the
exponents are given in the figure. The data are compared to pQCD models
of Bartels et al. [20] and Ivanov et al. [21]. It follows from the above
results that also large | t | provides a hard scale.

4.4. The Pomeron Trajectory

Staying within the framework of Regge theory, the best way to determine
the pomeron trajectory is to extract αIP (t) from the W dependence of the
data in different t bins according to:

dσ

dt
∝ eb(W )·t

(

W

W0

)4(αIP (t)−1)

.

Figure 20 shows the determined pomeron trajectories for photoproduc-
tion of ρ, φ, and J/Ψ mesons as well as the one from DIS ρ-production.
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The following trajectories are derived from the data :

ρ photoproduction : αIP (t) = 1.10 + 0.13 · t ,

φ photoproduction : αIP (t) = 1.08 + 0.16 · t ,

DIS ρ production : αIP (t) = 1.14 + 0.04 · t ,

J/Ψ photoproduction : αIP (t) = 1.20 + 0.12 · t .

The αIP (0) values of ρ- and φ-photoproduction are compatible with the
soft-pomeron trajectory. The αIP (0) values of DIS ρ- and J/Ψ-production
are definitely higher.

5. Inclusive deep-inelastic diffraction at HERA

In the Regge picture, inclusive deep-inelastic diffraction at HERA pro-
ceeds via the diagram shown in Fig.21, where it is assumed that the pomeron
has a partonic structure, following the initial idea of [23]. The exchange of
the colourless pomeron leads to a rapidity gap between the outgoing proton,
or the proton dissociative system N with a mass MN , and the diffractively
produced system X with mass MX . In pQCD, successful descriptions of
inclusive deep-inelastic diffraction are often formulated in the colour-dipole
picture as shown in Fig.22.

5.1. Methods to measure inclusive diffraction

There is no unique definition of a cross section for deep inelastic diffrac-
tive scattering. Different methods exist to select diffractive events. These
methods select samples which contain different fractions of proton dissocia-
tive events. Cross sections are usually given without corrections for proton
dissociation. A second problem originates from the fact that also non-
diffractive events may contain a rapidity gap due to the statistical nature
of fragmentation or from the exchange of reggeons. Such rapidity gaps are,
however, exponentially suppressed [22]. Different selection methods may
lead to different contributions of non-diffractive events to the selected sam-
ple. The following three selection methods have been used to select inclusive
diffractive events.

• Detection of the diffractively scattered proton.
The diffractively scattered protons are detected with specialised detec-
tor parts like silicon-strip detectors very close to the proton beamline
between 20 m and 90 m away from the interaction point. Figure 23
shows a measured spectrum of the longitudinal momentum-fraction of
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the detected proton w.r.t. the incoming proton, xL = 1−xIP . Clearly
visible is the diffractive peak around xL ≈ 1. Events at lower xL

originate from proton-dissociative diffraction and non-diffractive pro-
cesses. The detection of the diffractively scattered proton is the only
method to measure the t distribution of inclusive diffractive-reactions:

t =
−p2

T

xL
−

(1 − xL)2

xL
m2

p.

This method has the advantage of yielding a diffractive event sample
which is practically free of proton dissociation as long as xIP is below
0.01. At higher xIP values, reggeon contributions and proton disso-
ciation may contribute. The disadvantage of the method is its small
acceptance and therefore a small number of selected events.

• The rapidity gap method.
The (pseudo)-rapidity of a particle in an event is defined as η =
−ln(tan(Θ/2), where Θ is the scattering angle of the particle w.r.t.
the incoming proton beam. An event-display picture of a diffractive
DIS event recorded with the H1 detector is shown in Fig.24. There is
a rapidity gap between the proton direction and the final state particle
detected under the smallest angle Θmin, respectively ηmax. Figure 25
is an example of a measured ηmax distribution from H1. Also shown
in the figure as a histogram is the contribution to the data from non-
diffractive events. The region below an ηmax value of about 2 is dom-
inated by diffractive events which show an almost constant behaviour
down to small ηmax values. Applying an ηmax cut is equivalent to
restricting the events to low xIP values because ηmax ≈ ln(1/xIP ).
This method has the advantage of a large acceptance yielding high
statistics data samples. It has the disadvantage that the selected data
sample contains in certain kinematical regions contributions from non-
diffractive processes and from proton-dissociation events.

• The Mx method.
This method exploits the difference in the shape of the invariant mass
distribution of the final state particles seen in the detector for non-
diffractive and diffractive events.

(i) In non-diffractive events, the particles are produced evenly dis-
tributed in rapidity y = 1/2 · ln[(e + pz)/(e − pz)] between ymax and
ymin. The lenght of the rapidity plateau is given by the center of mass
energy which is W for virtual photon scattering:

lnW 2 ∝ ymax − ymin .
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However, not all final state particles are seen in the detector. The
ones which are produced with y > ylimit escape through the forward
beam-hole, where ylimit is given by the end of the detector acceptance.
The particles seen in detector lead to an invariant mass Mx given by
W . Therefore

W 2 = c0 · e
ymax−ymin and M2

x = c0 · e
ylimit−ymin .

The value of Mx will fluctuate due to the finite probability that no
particles are emitted between ylimit and ylimit −∆y. This generates a
rapidity gap also in non-diffractive events. The assumption of uncorre-
lated particle emission leads to a Poissonian rapidity gap distribution,
P (∆y) = e−λ∆y. This results in an exponential behaviour in the lnM2

x
distribution of non-diffractive events,

dN

dlnM2
x

= c · eb·lnM2
x .

The slope parameter b and the normalisation constant c can be deter-
mined from measured data.

(ii) For diffractive events, it is known from experiments that at not
too low Mx one gets

dN

dM2
x

∝
1

(M2
x)n

with n ≈ 1 or
dN

dlnM2
x

≈ constant = D .

This can also be derived from a triple-Regge model.

(iii) Measured event samples consist of non-diffractive and diffractive
events. This results in a lnM2

x distrubution of:

dN

dlnM2
x

= D + c · eb·lnM2
x .

Figure 26 shows a lnM2
x distrubution measured in the ZEUS exper-

iment for the kinematical region 40 < Q2 < 50 GeV2 and 200 <
W < 245 GeV. The two components are clearly visible. Shown are
also MC simulations of the non-diffractive and the diffractive contri-
butions. The sum of the two contributions describe well the measured
data.

(iv) The analytic form of the lnM2
x distribution is fitted to the mea-

sured distribution over the region indicated by the two vertical lines in
Fig.26. For the fit, D is taken to be constant. The fitted parameters
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are D, c and the exponential slope b. However, the diffractive contri-
bution is not taken as D but the fitted non-diffractive contribution,
as indicated by the dotted line in Fig.26, is statistically subtracted
from the measured data. The advantage of the lnM2

x method is that
it removes non-diffractive background and that its acceptance is high.
Like the rapidity-gap method, the lnM2

x method allows contributions
from proton-dissociative events.

5.2. Diffractive cross-section and diffractive structure-functions

The differential cross-section for diffractive processes is given by:

d4σ

dQ2dtdxIP dβ
=

2παem

βQ2
[1 − (1 − y)2] · σD(4)

r (Q2, t, xIP , β)

where the reduced cross-section σ
D(4)
r (Q2, t, xIP , β) is defined as:

σD(4)
r (Q2, t, xIP , β) = F

D(4)
2 (Q2, t, xIP , β) −

y2

1 + (1 − y)2
F

D(4)
L (Q2, t, xIP , β).

Here F
D(4)
2 and F

D(4)
L are the diffractive structure-functions in analogy to

F2 and FL in inclusive deep-inelasticc scattering. The longitudinal contri-
bution becomes sizable only at very high y values. Therefore, the ZEUS

collaboration neglects it and assumes σ
D(4)
r = F

D(4)
2 . If the variable t is not

measured but integrated over the the cross section is:

d3σ

dQ2dxIP dβ
=

2πα2
em

βQ4
[1 − (1 − y)2] · σD(3)

r (Q2, xIP , β) .

In diffractive deep-inelastic scattering, QCD factorisation of the following
form has been proven [24]:

σdiff ∝ fdiff
q (Q2, t, xIP , β) · σ̂pQCD .

Here fdiff
q (Q2, t, xIP , β) are universal diffractive parton-distributions and

σ̂pQCD is the perturbatively calculabe cross section for the hard parton-
parton scattering. Another factorisation is commonly used in the picture
where the pomeron has a partonic sructure [23]. This is illustrated in Fig.27.
Neglecting the longitudinal contribution, the diffractive cross-section is ex-
pressed by a pomeron structure-function F IP

2 and a pomeron-flux factor
which is derived from the triple-Regge formalism:

σdiff ∝ fIP/p(t, xIP ) · F IP
2 (Q2, β) with fIP/p(t, xIP ) =

eB·t

x
2α(t)−1
IP

.
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This Regge factorization is an assumption. No proof exists for it.

The data selected by the LRG method or by detecting the diffractively
scattered proton may contain contributions from reggeon exchanges which
are non-diffractive. Therefore the results are fitted to a sum of a pomeron
and of a reggeon contribution:

F
D(4)
2 (xIP , t, β,Q2) = fIP (xIP , t) · F IP

2 (β,Q2) + nIRfIR(xIP , t) · F IR
2 (β,Q2).

For F IR
2 (β,Q2) the pion structure-function is used and the flux factors for

pomeron and reggeon exchanges are parametrised as given in the previous
section. The fluxes are normalised according to xIP ·

∫ tmin

−1 fIP/IR(xIP , t) = 1

at xIP = 0.003 with |tmin| ≈ m2
px

2
IP /(1 − xIP ). The main fit results are

F IP
2 (β,Q2) and nIR, the relative normalisation of the reggeon contribution.

Other paramaters, like αIP/IR(0), α′

IP/IR(0), BIP/IR are either also fitted or

taken from other measurements. The above described fitting procedure can
be performed as well if t has not been measured but averaged over. In this
case the flux factors are also averaged over t.

In a picture in which the pomeron has a partonic structure, F IP
2 (β,Q2)

can be interpreted as the pomeron structure-function, very much like F2(β,Q2)
as the proton structure-function. Analogously it can be expressed as a sum
of universal pomeron parton-distribution functions (pdf):

F IP
2 (β,Q2) =

∑

i

fD
i (β,Q2)

where i denotes the parton species: u, d, s, gluon and the respective anti-
partons. In pQCD, these pomeron pdfs should obey the DGLAP evolution.
DGLAP fits and Regge fits are usually carried out simultaneously.

5.3. Results from the proton detection method

The H1 and the ZEUS experiments both are equipped with detector
components very close to the proton beam at a distance of up to 90 m
downstream of the experiment in proton direction: the forward proton spec-
trometer, FPS (H1), and the leading proton spectrometer, LPS (ZEUS).
These spectrometers detect protons at high xL. Results for xIP σD

r (3) from

H1 [25] are shown in Fig.28 and for xIP F
D(4)
2 at two different t-values from

ZEUS [26] are presented in Fig.29 as functions of xIP for different Q2 and β
values. In general, the data rise with decreasing xIP for xIP < 0.01. In both
experiments one sees a rise of the data at high xIP due to onset of reggeon
contributions.
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5.4. Results from the large rapidity gap method

The results from the large rapidity-gap method for inclusive diffraction
from H1 [27] and ZEUS [26] are shown in Fig.30 and Fig.31. The reduced

cross section, xIP σ
D(3)
r , or the diffractive structure-function, xIP F

D(3)
2 , are

displayed as functions of xIP for different values of Q2 and β. The results
from both experiments show qualitativley the same features. For not too
low β, they rise towards low xIP for xIP < 0.01. At higher xIP , they may
rise again slightly which is due to reggeon contributions. The H1 and ZEUS
data agree in shape. A quantitative comparison has to take into account
the different contents of proton dissociation in the data.

5.5. H1 fits of the diffractive parton distributions

As explained in 6.2, under the assumption of Regge factorisation, one
can define universal diffractive parton-distributions (dpdf), fi. The H1 col-
laboration fitted the dpdfs to the following parametrisation at Q2

0:

zfi(z,Q2
0) = Aiz

Bi(1 − z)Ci · e−
0.01
1−z .

Here z is the longitudinal momentum-fraction of the parton entering the
hard sub-process. For the lowest order quark-parton model process z = β,
for higher order processes 0 < β < z. The index i stands for the different
quark flavours and the gluon. For data with Q2 > 8.5 GeV2 two different
fits were performed [27]:

• Fit A: Q2
0 = 1.75 GeV2 and Bgluon was set to zero;

• Fit B: Q2
0 = 2.50 GeV2 and Bgluon and Cgluon were set to zero.

Both fits gave similar results, except for the diffractive gluon-distribution at
lower Q2 and high z. Figure 32 shows the results of the fits for the singlet
and gluon dpdfs.

5.6. Results from the ln M2
x-method and the BEKW(mod) fit

The ZEUS collaboration measured inclusive diffraction at HERA with
the ln M2

x -method [28]. Their results for xIP F
D(3)
2 as a function of xIP for

different Q2 and β values are given in Fig.34. Also here, the clear rise

of xIP F
D(3)
2 with decreasing xIP is visible. The lines are the results of a

modified BEKW fit. The BEKW model [29] is a coloured-dipole model.
The model takes into account terms from transverse photons, (F T

qq̄), and

longitudinal photons, (FL
qq̄). In addition it contains a contribution,(F T

qq̄g),
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from the splitting of the the vitual photon in a qq̄g state which interacts
with the photon. These three terms are parametrized in the following way:

xIP F
D(3)
2 (β, xIP , Q2) = cT · F T

qq + cL · FL
qq + cg · F

T
qqg,

where

F T
qq =

(

x0

xIP

)nT (Q2)

· β(1 − β),

FL
qq =

(

x0

xIP

)nL(Q2)

·
Q2

0

Q2 + Q2
0

·

[

ln

(

7

4
+

Q2

4βQ2
0

)]2

· β3(1 − 2β)2,

F T
qqg =

(

x0

xIP

)ng(Q2)

· ln

(

1 +
Q2

Q2
0

)

· (1 − β)γ .

For FL
qq, the term (

Q2

0

Q2 ) provided by BEKW was replaced by the factor

(
Q2

0

Q2+Q2

0

) to avoid problems as Q2 → 0. The powers nT,L,g(Q
2) were assumed

by BEKW to be of the form n(Q2) = n0 + n1 · ln[1 + ln(Q2

Q2

0

)]. The present

data suggested using the form n(Q2) = n0 + n1 ln(1 + Q2

Q2

0

). This modified

BEKW form will be referred to as BEKW(mod). Taking x0 = 0.01 and
Q2

0 = 0.4 GeV2, the BEKW(mod) form gives a good description of the
data. According to the fit, the coefficients n0 can be set to zero, and the
coefficient n1 can be assumed to be the same for T , L and g. Figure 33

shows the measured xIP F
D(3)
2 values for Q2 = 25 − 320GeV2 as a function

of β. Also given are the transverse, longitudinal and qq̄g contributions from

the fit. For xIP = 0.01, the dependence of F
D(3)
2 is shown in Fig.34 for all

Q2 values together with the BEKW(mod) fit results. The data points from
all Q2 values fall approximately on the same curve. The broad maximum
around β = 0.5 is explained by the transverse contribution which reflects
the β(1 − β) behaviour of the qq̄ component. For small β values the data
start to rise rapidly which is explained by the rise of the qq̄g contribution.
The indication of a rise of the data towards very high β may be explained
by the onset of the longitudinal contribution.

In Fig.35, the measured xIP F
D(3)
2 values are plotted as a function of

Q2 for xIP = 0.01 and diffenrent β values. The lines are the results of the
BEKW(mod) fit. One sees clearly a pattern of scaling violation similar to
that of the F2 in deep-inelastic scattering. The ZEUS data are compared to
the results from H1 measuered with the LRG method. For this comparison
the H1 binning has been chosen and only those data from ZEUS are shown
which could be translated to this binning with a correction of less than 20%.
There is fair agreement between the H1 and ZEUS data.
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6. Semi-inclusive deep-inelastic diffraction at HERA

Semi-inclusive deep-inelastic diffractive reactions are a good testing ground
for the universality of diffractive parton-distributions derived from inclusive
diffractive reactions. So far the production of D∗ mesons and of two jets in
the final state of diffractive reactions have been studied.

The diffractive production of D∗(2010) mesons proceeds via the process
depicted in Fig.36. The cc̄ quark-pair from the photon-gluon fusion forms
the D∗ meson which decays into D0π and successively into Kππ. The D∗

is detected as a peak in the distribution of the mass difference M(Kππ) −
M(Kπ) where M(Kπ) is in the mass region of D0 meson, as shown in Fig.37.
Figure 38 shows results from ZEUS [30] for the semi-inclusive diffractive
D∗(2010) production for several differential cross sections. The solid line is a
NLO QCD calculation for that process using diffractive parton-distributions
which have been determined from combined H1 and ZEUS data (ATCW
fit) [31]. The dashed line is a MC-simulation using the SATRAP generator
which is based on a colour-dipole model. The NLO QCD calculation is in fair
agreement with the data. This confirms the universality of the diffractive
parton-distributions.

The semi-inclusive diffrative DIS production of two jets takes place via
photon-gluon fusion and the produced quark and antiquark form a jet each.
Figure 39 presents results of H1 [32] on differential cross sections of diffrac-
tive 2-jet production. The data are compared to NLO QCD calculations
using the H1 fits A and B. The calculation describes reasonably well the
data. This is another confirmation of the universality of the diffractive
parton-distributions.

The measurements of semi-inclusive diffractive 2-jet production enable a
combined QCD fit of the diffractive parton-distributions using these results
together with the results for inclusive diffraction. Figure 40 shows the com-
bined fits made by the H1 collaboration with their data at Q2 = 25GeV2

and Q2 = 90GeV2. The singlet distribution-functions are hardly changed
by the combined fits. The additional 2-jet data have an impact on the gluon
distributions. The combined fit result is closer to the old H1 fit B .

7. Predictions from the HERA diffractive parton-distributions

for Tevatron data

The fact that predictions of semi-inclusive diffractive processes using the
the diffractive parton-distributions from inclusive diffractive-processes are
in agreement with the data from HERA within the uncertainties raises the
question how universal such parton distributions are. Can one use them
to predict diffractive processes in proton-antiproton scattering? Diffractive
2-jet cross sections have been measured at the Tevatron [33]. The main
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contribution to this process proceeds according to the diagram shown in
Fig.41. A gluon from the proton (antiproton)and a gluon originating from
a pomeron emitted by the the antiproton (proton) collide and form two jets
with a rapidity gap in the event. This process is described by two structure
functions, one of which is a diffractive one:

σ(p̄p → p̄X) ∝ Fjj ⊗ FD
jj ⊗ σ̂(ab → jj).

A determination of FD
jj (β) by the CDF collaboration from Tevatron data

is presented in Fig.42 together with the predictions based on the diffractive
parton-distributions from the H1 fit A and H1 fit B. The data are a factor
of 5 to 7 lower than the predictions. This is not unexpected because the
QCD factorisation has not been proven for hadron-hadron scattering. In
diffractive hadron-hadron scattering, interactions between the proton rem-
nant and the pomeron remnant can occur. Particles from such interactions
can fill the rapidity gap. This leads to a gap survival probability less than
one.
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Fig. 1. Diffractive scattering by Pomeron exchange showing from left to right:

elastic scattering, single dissociative diffraction, double dissociative diffraction, two

Pomeron-exchange diffraction.

Fig. 2. Diagram for inclusive

deep inelastic e-p scattering
Fig. 3. Diagram for inclusive diffractive

e-p scattering

Fig. 4. Diffractive DIS in the colour-

dipole picture.

+

higher orders

+

Fig. 5. Diffractive DIS in the colour-

dipole model in pQCD.
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*γ

Fig. 6. Exclusive vector-meson pro-

duction in the VMD-Regge frame-

work.

γ

Fig. 7. Exclusice vector-meson pro-

duction as a pQCD process.

Fig. 8. Photoproduction cross-

section for ρ, ω, φ, J/Ψ, Ψ(2S),

and Υ.

Fig. 9. Cross-section of J/Ψ photo-

production as a function of W com-

pared to pQCD models.
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Fig. 10. Slopes of the t depence for

photoproduction of ρ mesons.

Fig. 11. Slopes of the t depence for

photoproduction of J/Ψ mesons.

Fig. 12. The W dependence of DIS ρ-

production for different values of Q2.
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Fig. 13. The slope δ of the W depen-

dence of DIS ρ-production.
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Fig. 14. The W dependence of DIS
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Fig. 15. The Q2 dependence of DIS

J/Ψ-production for different values of

Q2. See the text for the fits.
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Fig. 16. The t slope parameter b of

DIS ρ-production as a function of Q2.
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Fig. 17. The t-slope parameter b of

DIS J/Ψ-production as a function of

Q2.

Fig. 18. The ratio of proton dis-

sociative to proton non-dissociative

cross sections for DIS ρ-production at

t=.06 GeV2 and t = 0.22 GeV2 .

Fig. 19. Differential cross-section as

a function of t for proton dissocia-

tive photoproduction of ρ,Φ and J/Ψ

mesons from the ZEUS experiment.
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Fig. 20. Pomeron trajectories derived

from vector-meson production and

soft hadronic processes.
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Fig. 21. Schematic diagram for inclu-

sive diffractive scttering in the Regge

picture.
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Fig. 22. Schematic diagram for in-

clusive diffractive sctattering in the

colour-dipole picture.
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pe

Fig. 24. A diffractive event with a ra-

pidity gap as seen in the H1 detector.

mostly diffractive

max

Fig. 25. Measured ηmax distribu-

tion. Shown as a histogram is

the expected contribution from non-

diffractive events as simulated by

then LEPTO MC generator.
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Diffractive events
• DATA

Fig. 26. A measured lnM2
x distribution. Also shown are MC simulations of non-

diffractive events (cross hatched) and of diffractive events (hatched). The analytic

form of the distribution is fitted to the data between the two vertical lines and the

fitted slope of the non-diffractive part is shown as a dotted line.
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Fig. 27. Schematic picture of Regge factorization.

Fig. 28. H1 FPS-results for xIP σ
D(3)
r .

The full lines are the result of a

combined Regge- and DGLAP-fit,

the dashed line is an extrapolation

to nonmeasured regions, the dotted

lines are the Pomeron contributions

only.

Fig. 29. ZEUS LPS results for

xIP F
D(4)
2 at t = 0.13 GeV−2 and

t = 0.3 GeV2. The lines are the result

of a combined Regge- and DGLAP-

fit.
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Fig.31: Result for inclu-
sive diffraction from ZEUS
from the LRG method as
a function of xIP for var-
ious β-values and for Q2

values from 2.5 GeV2 to
255 GeV2. The lines are
the result of a Regge fit.
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Fig. 32. Results of the H1 fits for the diffraction parton distributions.
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Fig. 34. ZEUS results for xIP FD
2 (3)

from the ln M2
x-method as a function

of β at xIP = 0.01 for Q2 values fron

25 GeV2 to 320 GeV2. The data

are compared to the results of the

BEKW(mod) fit showing separately

the different fit contributions.
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Fig. 35. Comparison of the ZEUS

results from the ln M2
x-method with

the H1 results from the LRG method.

Shown are xIP FD

2 (3) values as func-

tions of Q2 for different β values at

xIP = 0.01 multiplied by powers of 3

for better visibility. The curves show

the results of the BEKW(mod) fit to

the ZEUS data.

Fig. 36. Graphical presentation of the

semi-inclusive diffractive D∗ produc-

tion.

Fig. 37. The signal of the D∗(2010)

in the spectrum of the mass

differenceM(Kππ) − M(Kπ).
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Fig. 38. Differential cross sections for the semi-inclusive diffractive D∗(2010) pro-

duction. The solid line is a NLO QCD calculation for that process using diffractive

parton distribution functions which have been determined from combined H1 and

ZEUS data (ATCW fit). The dashed line is a MC-simulation using the SATRAP

generator which is based on a colour-dipole model.

Fig. 39. Differential cross sections for the semi-inclusive 2-jet production from H1.

The data are compared to NLO QCD calculations using H1 fit A (dotted line) and

H1 fit B (dashed line).
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Fig. 40. QCD fits of diffractive singlet- and gluon-distributions using the combined

inclusive diffractive and semi-inclusive 2-jet data performed by the H1 collabora-

tion. The combined fit results are compared to the H1 fits A and B from inclusive

diffractive data alone.

Fig. 41. Schematic diagram of inclu-

sive 2-jet production in p-p̄ collisions.

Fig. 42. Diffractive 2-jet production

as a function of β measured by CDF

at the Tevatron compared to predic-

tions based on H1 fit A and H1 fit B

to HERA data.


